Graphen ist dieses nur eine Atomlage dicke Schichtmaterial, das mit dem Nobel-Preis von 2010 über Nacht berühmt wurde. Doch jetzt gibt es Konkurrenz: Solch dünne Lagen können auch mit Phosphor erzeugt werden. Chemiker der Technischen Universität München (TUM) entwickelten nun ein Halbleiter-Material, bei dem einzelne Phosphor-Atome durch Arsen ersetzt sind. Im Rahmen einer internationalen Kooperation bauten sie daraus zusammen mit amerikanischen Kollegen erstmals Feldeffekt-Transistoren.

Seit vielen Jahrzehnten ist Silizium die Basis der modernen Elektronik. Bisher konnte die Silizium-Technik für immer kleinere Geräte immer kleinere Transistoren herstellen, doch die Größe von Silizium-Transistoren stößt langsam an ihre physikalische Grenze. Silizium ist darüber hinaus hart und spröde, doch die Konsumenten hätten gerne flexible Geräte, Geräte, die sich in Kleidung einarbeiten lassen und vieles mehr. All dies hat einen Wettlauf um neue Materialien ausgelöst, die Silizium eines Tages ersetzen könnten.

Ein solches Material könnte Arsen enthaltender schwarzer Phosphor sein. Wie das Graphen, das aus einer einzigen Lage von Kohlenstoffatomen besteht, bildet es dünnste Schichten. Die Bandbreite seiner Anwendungen reicht von Transistoren, über Sensoren bis hin zu mechanisch-flexiblen Halbleiter-Bauteilen. Anders als beim Graphen, dessen elektronisches Verhalten dem von Metallen ähnelt, verhält es sich wie ein Halbleiter.

In einer Kooperation der Technischen Universität München und der Universität Regensburg auf deutscher Seite sowie den amerikanischen Universitäten University of Southern California (USC) und Yale wurden nun erstmals Feldeffekt-Transistoren aus Arsen enthaltendem schwarzem Phosphor hergestellt. Die Verbindungen synthetisierte Marianne Köpf im Labor des Fachgebiets für Synthese und Charakterisierung innovativer Materialien an der TU München. Feldeffekt-Transistoren wurden in der Gruppe um Professor Zhou und Dr. Liu gebaut und vermessen.

Die von ihr entwickelte neue Methode ermöglicht es, schwarzes Arsen-Phosphor ohne hohen Druck zu synthetisieren. Das erfordert weniger Energie und ist billiger. Über den Arsengehalt kann die Lücke zwischen Valenz- und Leitungsband präzise eingestellt werden. Bei einem Arsengehalt von 83 Prozent hat das Material eine Bandlücke von nur noch 0,15 Elektronenvolt. Aus einem solchen Material können Sensoren aufgebaut werden, die Wellenlängen im langwelligen Infrarot detektieren. In diesem Bereich arbeiten beispielsweise LiDAR-Sensoren (unter anderem in Autos als Abstandssensoren). Eine andere Anwendung ist die Messung von Staubteilchen und Spurengasen in der Umweltmesstechnik.