Wie Verschlüsselung unsere Daten sicher macht
17. Mai 2022
über
über
Information ist Macht. Ob es sich nun um Staatsgeheimnisse oder um die aufschlussreichen Worte eines untreuen Partners handelt, die Offenlegung von Nachrichten und Briefen kann den Verlauf des Lebens von Menschen und den Erfolg von Nationen verändern. Aus diesem Grund wurde im Laufe der Jahrhunderte so viel Aufwand in die Verschlüsselung von Nachrichten und Dokumenten gesteckt. Aber wie sind wir zu den heutigen Verschlüsselungstechnologien gekommen, wie funktionieren sie und wie sicher sind sie?
Ein weiterer kritischer Aspekt einer Chiffre ist die Leichtigkeit, mit der sowohl der Sender als auch der Empfänger die Nachricht vorbereiten und entschlüsseln können. Beide Seiten müssen sich auch über die Einstellung des Code-Rads einigen. Sobald diese bekannt ist, können beide Seiten sicher, aber auch relativ einfach kommunizieren.
Mit ein wenig Zeit, einem Stift und etwas Papier kann man also durch Mustervergleich herausfinden, welcher Buchstabe mit welchem Buchstaben in der Chiffre verschlüsselt wurde. Wenn der Text lang genug ist, kann die Häufigkeitsanalyse wahrscheinliche Kandidaten für die Verschlüsselung von e, t, a und anderen häufig verwendeten Buchstaben und Kombinationen aufzeigen.
Hier gibt es einige wichtige Punkte zu beachten. Erstens muss die Person, die die Nachricht entschlüsselt, nicht wissen, wie sie verschlüsselt wurde. Wenn sie es weiß, beschleunigt das den Weg zum Erfolg, aber der Prozess wird schließlich sowohl die Nachricht als auch die Verschlüsselungsmethode liefern. Zweitens wird bei dem oben beschriebenen Ansatz nicht einmal ein Computer benötigt. Mit genügend Zeit und Erfahrung mit Sprachen wurden Chiffren schon lange vor der Entwicklung mechanischer Rechenmaschinen geknackt.
Many of the security systems that have been broken over the past decades are because failings were found in the implementation, even though their implementations were kept secret. Examples include KeeLoq for remote entry car keys and GSM encryption.
Viele der Sicherheitssysteme, die in den letzten Jahrzehnten geknackt wurden, sind darauf zurückzuführen, dass Schwachstellen in der Implementierung gefunden wurden, obwohl die Implementierungen geheim gehalten wurden. Beispiele hierfür sind KeeLoq für den Fernzugriff Autoschlüssel und die GSM-Verschlüsselung.
In den 1970er Jahren, als Computer immer häufiger zum Einsatz kamen, wurde klar, dass sie zur Sicherung der Kommunikation auf eine Art und Weise verwendet werden können, die besser ist als alles, was zuvor verwendet wurde, und ein viel höheres Maß an Sicherheit bietet. Anstatt jeden einzelnen Buchstaben eines Dokuments zu verschlüsseln, konnte das Dokument binär mit den 1en und 0en der gespeicherten Daten verschlüsselt werden. Dies würde den Inhalt der Groß- und Kleinbuchstaben und der Interpunktion umfassen. Außerdem konnten die Daten in jedem beliebigen Format bearbeitet werden und nicht nur im 7-Bit-Format, das für ASCII verwendet wird. Eine weitere Herausforderung war die Standardisierung. Damit zwei Personen eine verschlüsselte Nachricht austauschen können, müssen beide denselben Algorithmus verwenden. Würden mehrere Algorithmen verwendet, wäre es schwierig, Daten zwischen den Parteien zu übertragen.
Das National Bureau of Standards in den USA machte sich daran, dieses Problem zu lösen. IBM verfügte über ein kommerzielles Produkt namens Lucifer, das ein so hohes Sicherheitsniveau bot, dass es mit der damals verfügbaren Rechenleistung in naher Zukunft nicht zu knacken war. Daraus wurde der Data Encryption Standard (DES), der Schutz mit einem 56-Bit-Schlüssel bot. Doch damit waren die Herausforderungen noch nicht zu Ende. Obwohl der Algorithmus gemeinsam genutzt wurde, benötigten beide Parteien den Schlüssel, der zur Verschlüsselung der gemeinsam genutzten Daten verwendet wurde. Die nächste Herausforderung war also: Wie können wir Schlüssel sicher gemeinsam nutzen?
Glücklicherweise waren zwei Männer, Whitfield Diffie und Martin Hellman, nicht an Mythen interessiert. Sie arbeiteten zusammen und überlegten, wie sie das Problem angehen könnten und kamen auf eine mögliche Lösung. Ihre Idee bestand darin, eine geheime Nachricht in einer Schachtel zu versenden. Der Absender, der in Beschreibungen von Verschlüsselungsmethoden üblicherweise als Alice bezeichnet wird, legt seine Nachricht in eine Schachtel und bringt daran ein Vorhängeschloss an, für das nur er den Schlüssel hat. Sie schickt diese Schachtel an den Empfänger, der in der Regel Bob heißt. Natürlich kann Bob das Kästchen nicht öffnen, da Alice den Schlüssel zu ihrem Vorhängeschloss hat.
Jetzt kommt der clevere Teil. Bob bringt sein Vorhängeschloss, für das nur er einen Schlüssel hat, an der Kiste an. Dann gibt er die Kiste an Alice zurück. Sie nimmt nun ihr Vorhängeschloss ab, wobei die Nachricht dank Bobs Vorhängeschloss weiterhin sicher ist. In einem letzten Schritt wird das Kästchen an Bob zurückgeschickt, der sein Vorhängeschloss entfernt und die Nachricht von Alice abruft.
Dies änderte sich durch die Bemühungen von Rivest, Shamir und Adleman, die am MIT Laboratory for Computer Science arbeiteten. Sie entdeckten, dass es durch die Verwendung von Primzahlen möglich war, ein Schlüsselpaar zu erstellen. Der öffentliche Schlüssel dieses Paares konnte von Personen verwendet werden, die eine Nachricht verschlüsseln wollten, die z. B. an Alice geschickt werden sollte. Mit ihrem privaten Schlüssel konnte jedoch nur Alice die Nachricht entschlüsseln.
Das Ergebnis ihrer Arbeit führte zur RSA-Kryptographie mit öffentlichem Schlüssel.
Die Kryptografie beruht auf Techniken, die mit der heutigen Computertechnologie zu lange für einen Angriff brauchen. Als der Data Encryption Standard (DES) Mitte der 1970er Jahre entwickelt wurde, galt er als sehr sicher. Doch Mitte der 1990er Jahre konnte der speziell entwickelte Hardware-"Deep Crack" DES- Schlüssel in der Regel in weniger als 4,5 Tagen ermitteln. Dabei wurde eine Kombination aus massiv parallelen Schlüsseltests und Abkürzungen verwendet, die die für die Ermittlung des verwendeten Schlüssels benötigte Zeit reduzierten.
Heute ist der Advanced Encryption Standard (AES) der für die Verschlüsselung verwendete Algorithmus gültig der trotz intensiver Forschung noch nicht geknackt werden konnte. Angesichts des bevorstehenden Quantencomputings besteht jedoch die Gefahr, dass auch dieser Algorithmus kompromittiert werden könnte. Dank der Arbeit von Peter Shor existiert ein Quantencomputer-Algorithmus, der die Berechnung von Primfaktoren vereinfacht. Daher hat der Wettlauf um Lösungen für die Post-Quanten-Kryptografie bereits begonnen um sicher zu stellen, daß unsere Geheimnisse auch geheim bleiben.
Übersetzung: Walter Polleros
Frühe Formen der Verschlüsselung
Die meisten Menschen haben zum ersten Mal mit dem Verbergen von Nachrichteninhalten zu tun gehabt, als sie die Caeser-Chiffre verwendeten. Bei dieser Substitutions-Chiffre werden zwei Kopien des Alphabets nebeneinander gelegt, wobei die zweite Kopie um mehrere Positionen verschoben ist. Wenn also A auf E gesetzt wird, wird B zu F, und so weiter. Für jeden, der die Nachricht abfängt, sieht sie aus wie verstümmelte Wörter. Eine weitere Verwirrung kann erreicht werden, wenn die Buchstaben des lateinischen Alphabets durch kyrillische oder griechische Buchstaben oder Symbole ersetzt werden.Mx'w e psx sj jyr avmxmrk evxmgpiw jsv Ipioxsv!
Ein Beispiel für eine Caeser-Chiffre, die Sie hier entschlüsseln können.Ein weiterer kritischer Aspekt einer Chiffre ist die Leichtigkeit, mit der sowohl der Sender als auch der Empfänger die Nachricht vorbereiten und entschlüsseln können. Beide Seiten müssen sich auch über die Einstellung des Code-Rads einigen. Sobald diese bekannt ist, können beide Seiten sicher, aber auch relativ einfach kommunizieren.
Knacken der Chiffre
Natürlich ist es nicht besonders schwierig, den Inhalt einer solchen Kommunikation zu entschlüsseln. Allerdings muss man einige Dinge wissen, bevor man versucht, einen solchen Code zu knacken. Erstens muss man die Sprache des verschlüsselten Textes herausfinden. Ohne diese Information ist es unmöglich zu wissen, welche Wörter in der Nachricht enthalten sein könnten. Von hier aus können Muster und Häufigkeitsanalysen verwendet werden, um den Code zu knacken. Im Englischen werden zum Beispiel viele Wörter mit drei Buchstaben verwendet (the, and, why, how). Außerdem kommen bestimmte Buchstabenkombinationen regelmäßig vor (qu, th, ck, ly, ing). Schließlich gibt es Buchstaben, die häufiger vorkommen (e, t, a, o, i usw.) und andere, die seltener vorkommen (x, q, z).Mit ein wenig Zeit, einem Stift und etwas Papier kann man also durch Mustervergleich herausfinden, welcher Buchstabe mit welchem Buchstaben in der Chiffre verschlüsselt wurde. Wenn der Text lang genug ist, kann die Häufigkeitsanalyse wahrscheinliche Kandidaten für die Verschlüsselung von e, t, a und anderen häufig verwendeten Buchstaben und Kombinationen aufzeigen.
Unklarheit ist keine Sicherheit
Die grundlegende Erkenntnis hier ist, dass die Verschleierung der Methode, mit der eine Nachricht verschlüsselt wird, sie nicht unbedingt sicherer macht. Wie oft gesagt wird, ist Obskurität nicht Sicherheit. Und es ist nicht nur die verwendete Verschlüsselung, sondern auch die Art und Weise, wie die Systemimplementierung die Verschlüsselung einsetzt, kann die Schwachstelle sein. Sie können die beste Schloss- und Schlüssellösung der Welt haben, aber wenn die Tür aus Pappe ist und der Raum ein Glasfenster hat, haben Angreifer einfachere Möglichkeiten, einzubrechen.Many of the security systems that have been broken over the past decades are because failings were found in the implementation, even though their implementations were kept secret. Examples include KeeLoq for remote entry car keys and GSM encryption.
Viele der Sicherheitssysteme, die in den letzten Jahrzehnten geknackt wurden, sind darauf zurückzuführen, dass Schwachstellen in der Implementierung gefunden wurden, obwohl die Implementierungen geheim gehalten wurden. Beispiele hierfür sind KeeLoq für den Fernzugriff Autoschlüssel und die GSM-Verschlüsselung.
In den 1970er Jahren, als Computer immer häufiger zum Einsatz kamen, wurde klar, dass sie zur Sicherung der Kommunikation auf eine Art und Weise verwendet werden können, die besser ist als alles, was zuvor verwendet wurde, und ein viel höheres Maß an Sicherheit bietet. Anstatt jeden einzelnen Buchstaben eines Dokuments zu verschlüsseln, konnte das Dokument binär mit den 1en und 0en der gespeicherten Daten verschlüsselt werden. Dies würde den Inhalt der Groß- und Kleinbuchstaben und der Interpunktion umfassen. Außerdem konnten die Daten in jedem beliebigen Format bearbeitet werden und nicht nur im 7-Bit-Format, das für ASCII verwendet wird. Eine weitere Herausforderung war die Standardisierung. Damit zwei Personen eine verschlüsselte Nachricht austauschen können, müssen beide denselben Algorithmus verwenden. Würden mehrere Algorithmen verwendet, wäre es schwierig, Daten zwischen den Parteien zu übertragen.
Das National Bureau of Standards in den USA machte sich daran, dieses Problem zu lösen. IBM verfügte über ein kommerzielles Produkt namens Lucifer, das ein so hohes Sicherheitsniveau bot, dass es mit der damals verfügbaren Rechenleistung in naher Zukunft nicht zu knacken war. Daraus wurde der Data Encryption Standard (DES), der Schutz mit einem 56-Bit-Schlüssel bot. Doch damit waren die Herausforderungen noch nicht zu Ende. Obwohl der Algorithmus gemeinsam genutzt wurde, benötigten beide Parteien den Schlüssel, der zur Verschlüsselung der gemeinsam genutzten Daten verwendet wurde. Die nächste Herausforderung war also: Wie können wir Schlüssel sicher gemeinsam nutzen?
Lösung der Frage, wie man Schlüssel verteilt
In seinem Buch, Das Codebuch: The Secret History of Codes and Codebreaking stellt Simon Singh fest, dass "das Problem der Schlüsselverteilung Kryptographen im Laufe der Geschichte geplagt hat". Während des Zweiten Weltkriegs mussten Codebücher verteilt werden, damit die Enigma-Operatoren sicher kommunizieren konnten. Auch bei DES musste die US- Regierung Schlüssel auf Papierbändern und Disketten an Mitarbeiter in aller Welt verteilen, um die Sicherheit ihrer Kommunikation zu gewährleisten. Der Mythos war, dass das Problem der Schlüsselverteilung nicht gelöst werden konnte.Glücklicherweise waren zwei Männer, Whitfield Diffie und Martin Hellman, nicht an Mythen interessiert. Sie arbeiteten zusammen und überlegten, wie sie das Problem angehen könnten und kamen auf eine mögliche Lösung. Ihre Idee bestand darin, eine geheime Nachricht in einer Schachtel zu versenden. Der Absender, der in Beschreibungen von Verschlüsselungsmethoden üblicherweise als Alice bezeichnet wird, legt seine Nachricht in eine Schachtel und bringt daran ein Vorhängeschloss an, für das nur er den Schlüssel hat. Sie schickt diese Schachtel an den Empfänger, der in der Regel Bob heißt. Natürlich kann Bob das Kästchen nicht öffnen, da Alice den Schlüssel zu ihrem Vorhängeschloss hat.
Jetzt kommt der clevere Teil. Bob bringt sein Vorhängeschloss, für das nur er einen Schlüssel hat, an der Kiste an. Dann gibt er die Kiste an Alice zurück. Sie nimmt nun ihr Vorhängeschloss ab, wobei die Nachricht dank Bobs Vorhängeschloss weiterhin sicher ist. In einem letzten Schritt wird das Kästchen an Bob zurückgeschickt, der sein Vorhängeschloss entfernt und die Nachricht von Alice abruft.
Von Vorhängeschlössern zu Mathematik
Das Verfahren beweist zwar, dass eine Nachricht sicher von einer Partei zur anderen weitergegeben werden kann, ohne dass zuvor ein gemeinsamer Schlüssel ausgetauscht werden muss, doch eine Herausforderung bleibt: Wie kann man die Idee mathematisch umsetzen? Die Lösung wurde in Einwegfunktionen gefunden - Mathematik, die einfach auszuführen ist, um ein Ergebnis zu erhalten, aber eine Herausforderung darstellt, das Ergebnis in die ursprünglichen Werte umzukehren, die in der Berechnung verwendet wurden. Es war die modulare Arithmetik, die zur Rettung führte. Mit diesem Ansatz konnten Alice und Bob ihre Schlüssel öffentlich austauschen, aber nur sie konnten eine zwischen ihnen gesendete Nachricht mit ihren privaten Schlüsseln verschlüsseln und entschlüsseln. Die Herausforderung bestand jedoch darin, dass ein Schlüssel gemeinsam genutzt werden musste.Dies änderte sich durch die Bemühungen von Rivest, Shamir und Adleman, die am MIT Laboratory for Computer Science arbeiteten. Sie entdeckten, dass es durch die Verwendung von Primzahlen möglich war, ein Schlüsselpaar zu erstellen. Der öffentliche Schlüssel dieses Paares konnte von Personen verwendet werden, die eine Nachricht verschlüsseln wollten, die z. B. an Alice geschickt werden sollte. Mit ihrem privaten Schlüssel konnte jedoch nur Alice die Nachricht entschlüsseln.
Das Ergebnis ihrer Arbeit führte zur RSA-Kryptographie mit öffentlichem Schlüssel.
Wie sicher sind unsere Verschlüsselungsalgorithmen??
In den heutigen Nachrichten mangelt es nicht an "Hacking"-Geschichten, aber in den meisten Fällen wird der Zugang zu verschlüsselten Daten durch Social Engineering geknackt, um Passwörter und Zugangsdaten zu stehlen, nicht durch die Verschlüsselungsmethode. Wie lange haben wir also noch Zeit, bis die heutige Verschlüsselungstechnologie geknackt wird?Die Kryptografie beruht auf Techniken, die mit der heutigen Computertechnologie zu lange für einen Angriff brauchen. Als der Data Encryption Standard (DES) Mitte der 1970er Jahre entwickelt wurde, galt er als sehr sicher. Doch Mitte der 1990er Jahre konnte der speziell entwickelte Hardware-"Deep Crack" DES- Schlüssel in der Regel in weniger als 4,5 Tagen ermitteln. Dabei wurde eine Kombination aus massiv parallelen Schlüsseltests und Abkürzungen verwendet, die die für die Ermittlung des verwendeten Schlüssels benötigte Zeit reduzierten.
Heute ist der Advanced Encryption Standard (AES) der für die Verschlüsselung verwendete Algorithmus gültig der trotz intensiver Forschung noch nicht geknackt werden konnte. Angesichts des bevorstehenden Quantencomputings besteht jedoch die Gefahr, dass auch dieser Algorithmus kompromittiert werden könnte. Dank der Arbeit von Peter Shor existiert ein Quantencomputer-Algorithmus, der die Berechnung von Primfaktoren vereinfacht. Daher hat der Wettlauf um Lösungen für die Post-Quanten-Kryptografie bereits begonnen um sicher zu stellen, daß unsere Geheimnisse auch geheim bleiben.
Übersetzung: Walter Polleros
Mehr anzeigen
Weniger anzeigen
Diskussion (0 Kommentare)